Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 52(10): e8491, 2019. tab, graf
Article in English | LILACS | ID: biblio-1039254

ABSTRACT

Considering the recognized role of thyroid hormones on the cardiovascular system during health and disease, we hypothesized that type 2 deiodinase (D2) activity, the main activation pathway of thyroxine (T4)-to-triiodothyronine (T3), could be an important site to modulate thyroid hormone status, which would then constitute a possible target for β-adrenergic blocking agents in a myocardial infarction (MI) model induced by left coronary occlusion in rats. Despite a sustained and dramatic fall in serum T4 concentrations (60-70%), the serum T3 concentration fell only transiently in the first week post-infarction (53%) and returned to control levels at 8 and 12 weeks after surgery compared to the Sham group (P<0.05). Brown adipose tissue (BAT) D2 activity (fmol T4·min-1·mg ptn-1) was significantly increased by approximately 77% in the 8th week and approximately 100% in the 12th week in the MI group compared to that of the Sham group (P<0.05). Beta-blocker treatment (0.5 g/L propranolol given in the drinking water) maintained a low T3 state in MI animals, dampening both BAT D2 activity (44% reduction) and serum T3 (66% reduction in serum T3) compared to that of the non-treated MI group 12 weeks after surgery (P<0.05). Propranolol improved cardiac function (assessed by echocardiogram) in the MI group compared to the non-treated MI group by 40 and 57%, 1 and 12 weeks after treatment, respectively (P<0.05). Our data suggested that the beta-adrenergic pathway may contribute to BAT D2 hyperactivity and T3 normalization after MI in rats. Propranolol treatment maintained low T3 state and improved cardiac function additionally.


Subject(s)
Animals , Male , Rats , Propranolol/administration & dosage , Thyroxine/blood , Adipose Tissue, Brown/metabolism , Adrenergic beta-Agonists/administration & dosage , Iodide Peroxidase/metabolism , Myocardial Infarction/metabolism , Thyroxine/drug effects , Triiodothyronine/drug effects , Triiodothyronine/blood , Adipose Tissue, Brown/drug effects , Rats, Wistar , Disease Models, Animal , Iodide Peroxidase/drug effects
2.
Braz. j. med. biol. res ; 30(12): 1479-84, Dec. 1997. tab, graf
Article in English | LILACS | ID: lil-212595

ABSTRACT

There is little information on the possible effects of estrogen on the activity of 5'-deiodinase (5'-ID), an enzyme responsible for the generation of T3, the biologically active thyroid hormone. In the present study, anterior pituitary sonicates or hepatic and thyroid microsomes from ovariectomized (OVX) rats treated or not with estradiol benzoate (EB, 0.7 or 14 mug/100 g body weight, sc, for 10 days) were assayed for type I 5'-ID (5'-ID-I) and type II 5'-ID (5'-ID-II, only in pituitary) activities. The 5'-ID activity was evaluated by the release of (125)I from deiodinated (125)I rT3, using specific assay conditions for type I or type II. Serum TSH and free T3 and free T4 were measured by radioimmunoassay. OVX alone induced a reduction in pituitary 5'-ID-I (control = 723.7 + 67.9 vs OVX = 413.9 + 26.9; P<0.05), while the EB-treated OVX group showed activity similar to that of the normal group. Thyroid 5'-ID-I showed the same pattern of changes, but these changes were not statistically significant. Pituitary and hepatic 5'-ID-II did not show major alterations. The treatment with the higher EB dose (14 mug), contrary to the results obtained with the lower dose, had no effect on the reduced pituitary 5'-ID-I of OVX rats. However, it induced an imporatnt increment of 5'-ID-I in the thyroid gland (0.8 times higher than that of the normal group: control = 131.9 + 23.7 vs OVX + EB 14 mug = 248.0 + 31.2; P<0.05), which is associated with increased serum TSH (0.6-fold vs OVX, P<0.05) but normal serum free T3 and free T4. The data suggest that estrogen is a physiological stimulator of anterior pituitary 5'-ID-I and a potent stimulator of the thyroid enzyme when employed at high doses.


Subject(s)
Rats , Female , Animals , Estradiol/analogs & derivatives , Estradiol/pharmacology , In Vitro Techniques , Iodide Peroxidase/drug effects , Liver/drug effects , Liver/enzymology , Pituitary Gland, Anterior/drug effects , Pituitary Gland, Anterior/enzymology , Thyroid Gland/drug effects , Thyroid Gland/enzymology , Analysis of Variance , Immunohistochemistry , Iodide Peroxidase/analysis , Microsomes , Ovariectomy , Radioimmunoassay , Rats, Wistar , Thyroxine/analysis , Triiodothyronine/analysis
SELECTION OF CITATIONS
SEARCH DETAIL